DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus.

نویسندگان

  • Pierpaolo Ceci
  • Sara Cellai
  • Elisabetta Falvo
  • Claudio Rivetti
  • Gian Luigi Rossi
  • Emilia Chiancone
چکیده

Escherichia coli Dps (DNA-binding proteins from starved cells) is the prototype of a DNA-protecting protein family expressed by bacteria under nutritional and oxidative stress. The role of the lysine-rich and highly mobile Dps N-terminus in DNA protection has been investigated by comparing the self-aggregation and DNA-condensation capacity of wild-type Dps and two N-terminal deletion mutants, DpsDelta8 and DpsDelta18, lacking two or all three lysine residues, respectively. Gel mobility and atomic force microscopy imaging showed that at pH 6.3, both wild type and DpsDelta8 self-aggregate, leading to formation of oligomers of variable size, and condense DNA with formation of large Dps-DNA complexes. Conversely, DpsDelta18 does not self-aggregate and binds DNA without causing condensation. At pH 8.2, DpsDelta8 and DpsDelta18 neither self-aggregate nor cause DNA condensation, a behavior also displayed by wild-type Dps at pH 8.7. Thus, Dps self-aggregation and Dps-driven DNA condensation are parallel phenomena that reflect the properties of the N-terminus. DNA protection against the toxic action of Fe(II) and H2O2 is not affected by the N-terminal deletions either in vitro or in vivo, in accordance with the different structural basis of this property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The neutrophil-activating Dps protein of Helicobacter pylori, HP-NAP, adopts a mechanism different from Escherichia coli Dps to bind and condense DNA

The Helicobacter pylori neutrophil-activating protein (HP-NAP), a member of the Dps family, is a fundamental virulence factor involved in H.pylori-associated disease. Dps proteins protect bacterial DNA from oxidizing radicals generated by the Fenton reaction and also from various other damaging agents. DNA protection has a chemical component based on the highly conserved ferroxidase activity of...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection

Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...

متن کامل

Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid

  Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...

متن کامل

Anti-cancer properties of Escherichia coli Nissle 1917 against HT-29 colon cancer cells through regulation of Bax/Bcl-xL and AKT/PTEN signaling pathways

Objective(s): Chemotherapies used to treat colon cancer might often fail due to the emergence of chemoresistance and side effects. Escherichia coli Nissle 1917 (EcN) is a beneficial probiotic, whose molecular mechanisms in the prevention of colon cancer are yet to be fully understood. The present study assessed the anti-cancer effects of EcN treatments in human colorec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 19  شماره 

صفحات  -

تاریخ انتشار 2004